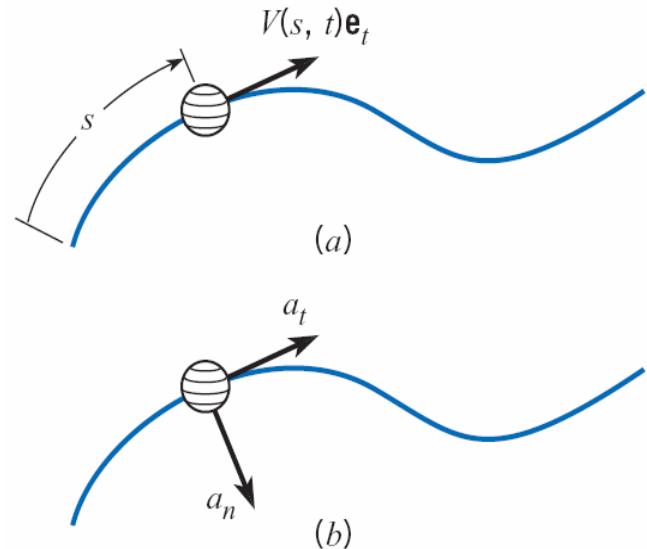


# Acceleration

Lagrangian Approach where  
the velocity is a function of time only.

The velocity of fluid particle  
can be expressed as

$$V = V(s, t)e_t$$



Fluid particle moving on a pathline

Where:  $V(s, t)$  is the speed of particle.

$\mathbf{e}_t$  is the unit vector of velocity direction.



# Fluid Motion

The velocity of fluid particle can be expressed as

$$a = \frac{dV}{dt} = \left( \frac{dV}{dt} \right) e_t + V \left( \frac{de_t}{dt} \right)$$

$$\left( \frac{dV}{dt} \right) e_t = \frac{dV(s, t)}{dt} = \left( \frac{\partial V}{\partial s} \right) \left( \frac{\partial s}{\partial t} \right) + \left( \frac{\partial V}{\partial t} \right)$$

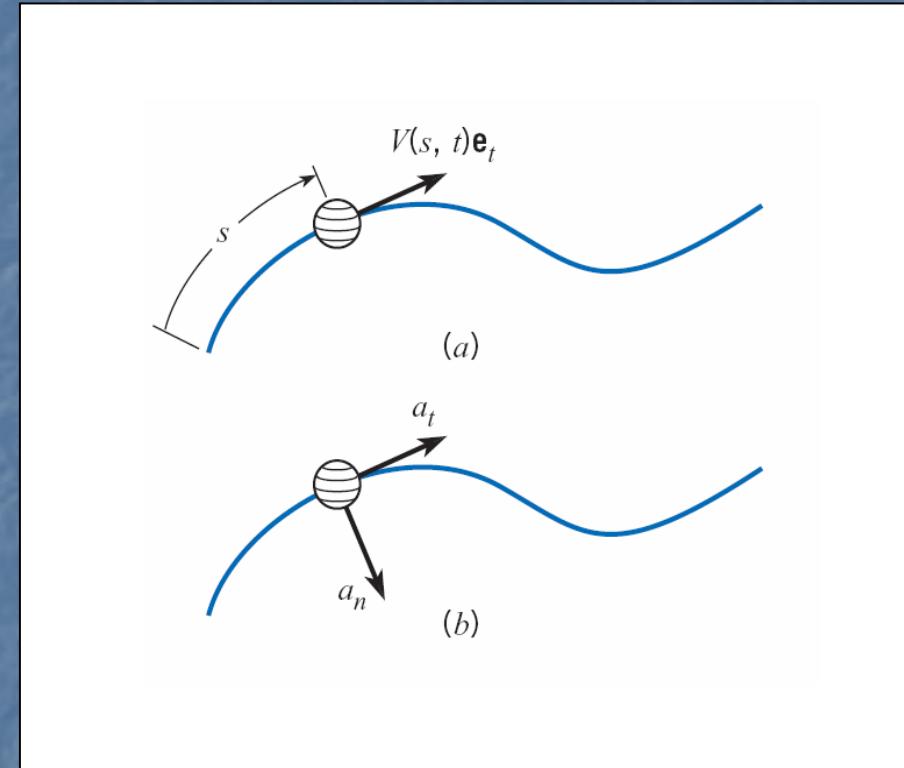
$$\frac{dV}{dt} = V \left( \frac{\partial V}{\partial s} \right) + \left( \frac{\partial V}{\partial t} \right)$$

$$\left( \frac{de_t}{dt} \right) = \left( \frac{V}{r} \right) e_n$$

Where:

**$r$**  = radius of local curvature

**$e_n$**  = unit vector that is perpendicular to the pathline



# Fluid Motion

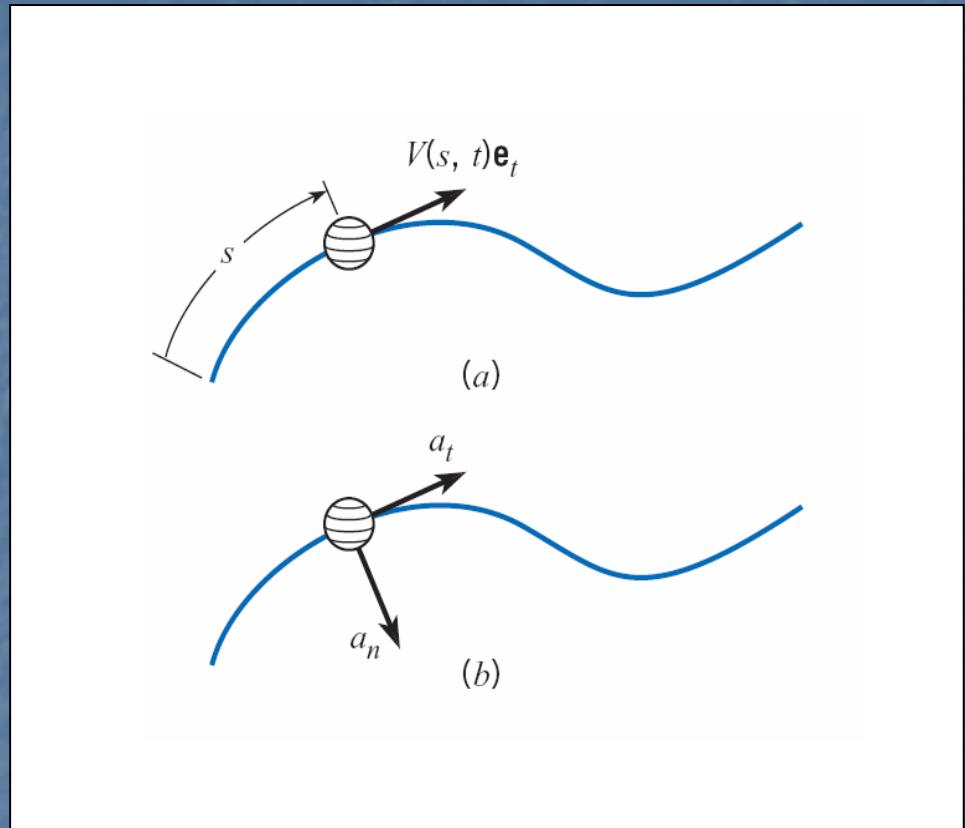
$$a = \left( V \frac{\partial V}{\partial s} + \frac{\partial V}{\partial t} \right) e_t + \left( \frac{V^2}{r} \right) e_n$$

$$a = a_t + a_n$$

Where:

$$a_t = \left( V \frac{\partial V}{\partial s} + \frac{\partial V}{\partial t} \right)$$

$$a_n = \left( \frac{V^2}{r} \right)$$



# Fluid Motion

## Acceleration

Eulerian Approach where the velocity is a function of time and Space.

Considering the Cartesian coordinates

$$V = ui + vj + wk \quad \text{Where} \quad u = f(x, y, z, t), \quad v = f(x, y, z, t), \quad w = f(x, y, z, t)$$

The acceleration in the X-direction is given by,

$$a_x = \frac{du}{dt} = \left( \frac{\partial u}{\partial x} \frac{dx}{dt} \right) + \left( \frac{\partial u}{\partial y} \frac{dy}{dt} \right) + \left( \frac{\partial u}{\partial z} \frac{dz}{dt} \right) + \left( \frac{\partial u}{\partial t} \right)$$

The acceleration in the Y-direction is given by,

$$a_y = \frac{dy}{dt} = \left( \frac{\partial v}{\partial x} \frac{dx}{dt} \right) + \left( \frac{\partial v}{\partial y} \frac{dy}{dt} \right) + \left( \frac{\partial v}{\partial z} \frac{dz}{dt} \right) + \left( \frac{\partial v}{\partial t} \right)$$



# Fluid Motion

The acceleration in the Z-direction is given by,

$$a_z = \frac{dw}{dt} = \left( \frac{\partial w}{\partial x} \frac{dx}{dt} \right) + \left( \frac{\partial w}{\partial y} \frac{dy}{dt} \right) + \left( \frac{\partial w}{\partial z} \frac{dz}{dt} \right) + \left( \frac{\partial w}{\partial t} \right)$$

As  $u = \left( \frac{dx}{dt} \right)$        $v = \left( \frac{dy}{dt} \right)$        $w = \left( \frac{dz}{dt} \right)$

$$a_x = \frac{du}{dt} = \left( u \frac{\partial u}{\partial x} \right) + \left( v \frac{\partial u}{\partial y} \right) + \left( w \frac{\partial u}{\partial z} \right) + \left( \frac{\partial u}{\partial t} \right)$$

$$a_y = \frac{dy}{dt} = \left( u \frac{\partial v}{\partial x} \right) + \left( v \frac{\partial v}{\partial y} \right) + \left( w \frac{\partial v}{\partial z} \right) + \left( \frac{\partial v}{\partial t} \right)$$

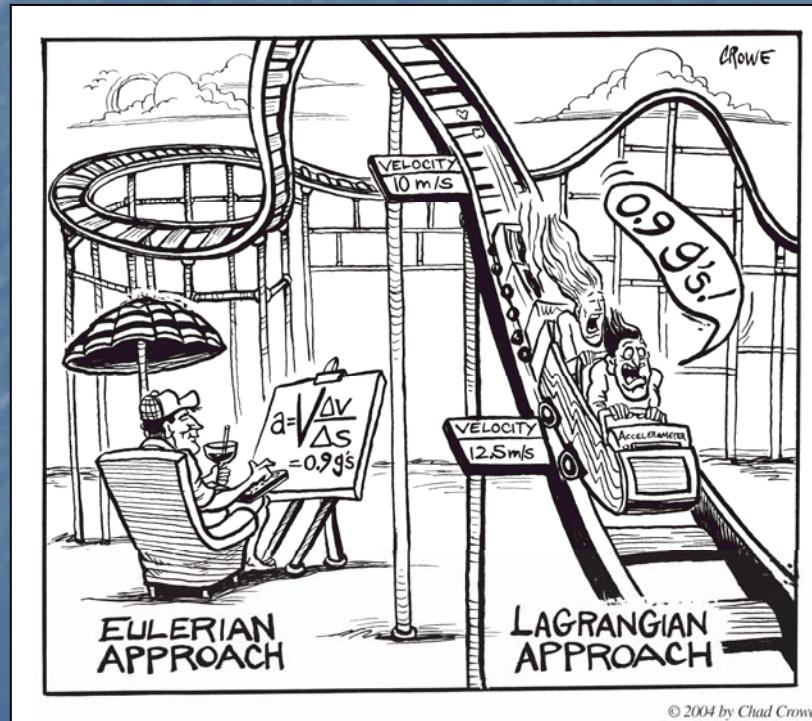
$$a_z = \frac{dw}{dt} = \left( u \frac{\partial w}{\partial x} \right) + \left( v \frac{\partial w}{\partial y} \right) + \left( w \frac{\partial w}{\partial z} \right) + \left( \frac{\partial w}{\partial t} \right)$$



# Fluid Motion

Local Acceleration =  $\left( \frac{\partial u}{\partial t} \right), \left( \frac{\partial v}{\partial t} \right) \text{ and } \left( \frac{\partial w}{\partial t} \right)$

Convective Accelerations =  $\left( u \frac{\partial u}{\partial x} \right) \quad \left( v \frac{\partial v}{\partial y} \right) \quad \left( w \frac{\partial w}{\partial z} \right)$



# Fluid Motion

$$V = 2x^2ti + 3xy^2j + 2xzk$$

At point  $(1,1,1)$ , Find  $a_x$

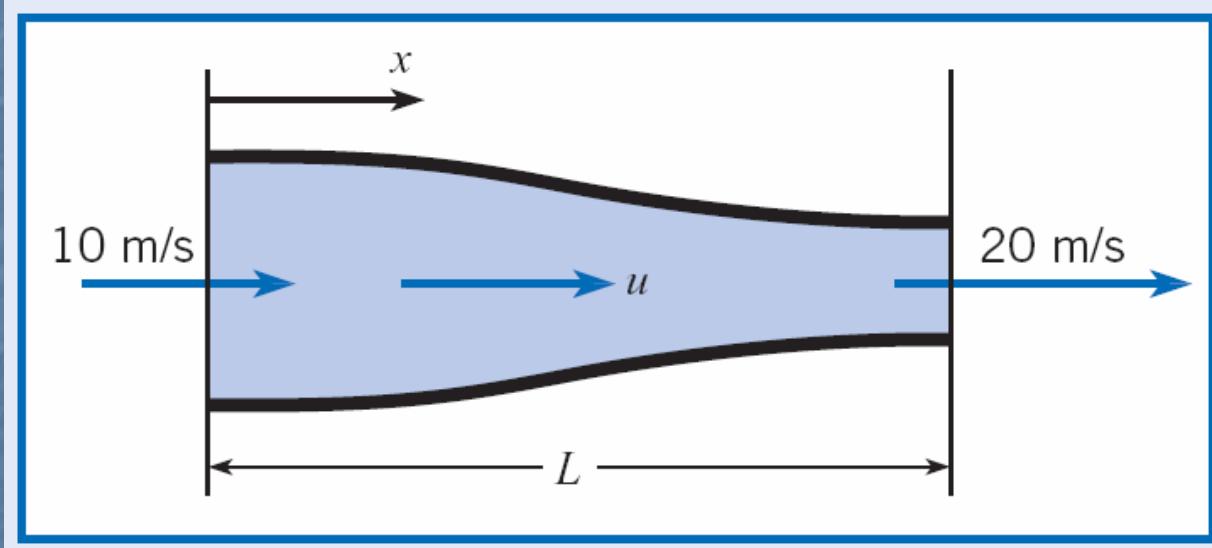
$$a_x = \frac{du}{dt} = \left( u \frac{\partial u}{\partial x} \right) + \left( v \frac{\partial u}{\partial y} \right) + \left( w \frac{\partial u}{\partial z} \right) + \left( \frac{\partial u}{\partial t} \right)$$



# Fluid Motion

## Solved Example

$$u = \frac{u_0}{1 - \frac{0.5x}{L}}$$



$$a_x = \frac{du}{dt} = \left( u \frac{\partial u}{\partial x} \right) + \left( v \frac{\partial u}{\partial y} \right) + \left( w \frac{\partial u}{\partial z} \right) + \left( \frac{\partial u}{\partial t} \right)$$

$$u \frac{\partial u}{\partial x}$$



# END OF LECTURE (3)

